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The gelation of a polyvinylalcohol–glutaraldehyde–water solution confined in a Bentheimer sandstone was
characterized by carrying out1H-n.m.r. spin-lattice relaxation rate measurement (1/T1) and pulse field gradient
diffusion (D) measurements at 678C. At any time during the gel reaction neither the longitudinal magnetization
versusstorage time nor the echo-amplitudeversusgradient strength (squared) could be described by single
exponential functions. In order to characterize these multi-exponential decay curves by a minimum number of
parameters a gaussian type of distribution function (Rayleigh distribution) in 1/T1 andD were adopted. When
implementing these distribution functions and fitting all spin-lattice relaxation data and diffusion data
simultaneously, in order to constrain the fitting more effectively, the two n.m.r. derived parameters (1/T1 andD)
were found to give consistent results. During gelation the average relaxation rate and the average diffusion
coefficientversusreaction time were found to be described by a first order rate process with a rate constant equal
to 18 3 10¹5 s¹1. Also, the widths of the two distribution functions were found to decrease with reaction time.
Moreover, the gelation rate within the Bentheimer sandstone was found to be significantly faster compared to the
gelation rate of the bulk solution.q 1998 Elsevier Science Ltd. All rights reserved.
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INTRODUCTION

High-viscosity polymeric fluids and gels have been used to
control the water mobility and the water profiles in injectors,
with the primary application in enhanced oil recovery1–4. In
recent years, interest has been focused on using biopolymers
as gelation agent because of their non-toxic and environ-
mental advantages2. To extract information related to the
mechanisms and the kinetics involved in this type of
reaction systems, a number of different experimental
techniques have been used5–7. 1H-n.m.r. relaxation time
measurements have been applied successfully to study the
kinetics of gelation processes involving paramagnetic ions
(chromium)8,9. However, chromium is a rather controversial
chemical due its potential toxic hazards. Therefore, a non-
toxic gel system composed of polyvinylalcohol (PVA) and
glutaraldehyde dissolved in saline water was later investi-
gated by Hansenet al.10 using conventional1H-n.m.r.
spectroscopy. This reaction was investigated in bulk
solution giving rise to narrow resonance lines from the
reagent and product molecules which could be monitored
versusreaction time. Variable temperature measurements
enabled both mechanistic and kinetic parameters to be
extracted.

Recently, Hansenet al.11 showed that using the pulsed
field gradient (PFG) n.m.r. technique it was possible to
follow the gelation process of PVA not only in bulk solution
but also within a porous ‘material’ composed of glass beads.
Due to the multi-exponential behaviour of the observed
n.m.r. signal intensityversus the square of the applied
gradient field, a simple and unique physical representation
of the gelation process was complex.

The object of the present work is therefore to introduce a
more rigorous physical model based on a distribution
coefficients to account for the observed multi-exponentiality
of the observed n.m.r. signal intensity. Moreover, an
improved data analysis which constrains the fitting more
effectively will be discussed. Both diffusion measurements
and spin-lattice relaxation time measurements will be
reported and related to the rate of gelation. Also, a more
convenient and natural porous material (Bentheimer
sandstone) is chosen in this study, rather than the more
artificial porous material composed of packed glass beads as
reported11.

EXPERIMENTAL

Materials
The reagents used in this study were Floperm 665P

(polyvinyl alcohol) from OFPG Inc., Floperm 665X1 (25%
glutaraldehyde in eater) from OFPG Inc., and a brine
solution with a total ionic strength of 0.475. All chemicals
were used as received without further purification. The pH
of the bulk solution was approximately 4.7. To mimic the
porous system normally found in oil reservoirs we selected a
Bentheimer sandstone which, from experience, contains a
minimum amount of paramagnetic and ferromagnetic salts.
Porous materials containing such salts have a devastating
effect on the n.m.r. signal due to a significant shortening of
the spin–spin relaxation times, resulting in an unwanted
increase in the decay rate of the transversal magnetization.
The porous material was cut to a small cylindrical piece of
length approximately 15 mm and a diameter of approxi-
mately 4 mm which nicely fits in to the 5 mm n.m.r. tube.
The pore size is in the range of a few microns. No cleaning
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or pretreatment was applied except that the plug was stored
at 1058C overnight before being saturated with the polymer
solution.

Preparation of solution
352ml of crosslinker was mixed with 100 g of the

premade gel solution and stirred for 5 min at room
temperature. No significant gelation was initiated at this
temperature10,11. The sandstone was filled with the gel
mixture under vacuum and transferred to a 5 mm n.m.r.
tube. The n.m.r. tube was sealed before transferred to the
magnet at 808C where the n.m.r. measurement was initiated.

The diffusion measurements were all performed on a
Bruker DMX 200 AVANCE operating at 200 MHz using a
spin-lattice stimulated spin-echo pulse field gradient
technique12–15. The pulse sequence is illustrated inFigure
1, showing three successivep/2 r.f.-pulses with a time delay
of t1 (preparation time) between the first two pulses and a
time delayt2 (storage time) between the second and the last
pulse. Thep/2 pulse was 5.2ms. The second part of the
figure (below) shows the gradient pulses characterized by

their duration (d) and strength (g). The echo is observed at
time t1 after the last r.f.-pulse. If not stated otherwise in the
text the following parameters were used;d ¼ 2 ms, t1 ¼
2.5 ms,t2 ¼ 15.5 ms. The spin-lattice relaxation time (T1)
was measured using the same pulse sequence with a
constant gradient pulse strength of 200 gauss cm¹1 and by
varying the storage timet2; 10, 20, 40, 80, 160, 320, 640 and
1280 ms. The time between transients was set to more than
five times the spin-lattice relaxation time to ensure
quantitative measurements.

A Bruker diffusion probe denoted MIC DIF 200 WB was
used in all experiments.

THEORY

The pulsed field-gradient pulse sequence, which is illu-
strated inFigure 1, facilitates the measurement ofD in
systems in which the spin-lattice relaxation time (T1) is
large relative to the spin–spin relaxation time (T2), as is
often the case in polymer systems16.

The echo intensity (I) can be represented by:

I ¼
∑

i
M0iR1(t2; T1i)·R2(t1; T2i)·R3(t1, t2,g; Di) (1a)

where;

R1(t2; T1) ¼ exp( ¹ t2=T1) (1b)

R2(t1; T1) ¼ exp( ¹ t1=T2) (1c)

R3(t1, t2, d,g; D) ¼ exp( ¹ (gdg)2·(t1 þ t2 ¹ d=3)·D) (1d)

where g is the magnetogyric ratio equal to 2.673
108 s¹1 T¹1. The other symbols have been defined pre-
viously (see alsoFigure 1).

RESULTS AND DISCUSSION

Preliminary
The single pulse1H-n.m.r. spectra (not shown) of

the PVA–glutaraldehyde–water solution confined in a
Bentheimer sandstone revealed a single, non-resolved
broad peak with no fine structure. The more than two
orders of magnitude larger line width of the solvent water
resonance peak within the porous material as compared to
the line width in bulk solution is mainly caused by the
magnetic susceptibility difference between the solid matrix
(Bentheimer) and the confined water. This significant
broadening of the water peak masks any observable
resonance peaks arising from the polymer (PVA) due to
its much lower concentration (1–2 mass%) and made it
experimentally impossible to remove the water peak by, for
instance, homo-decoupling12 or by use of any solvent
suppression technique17. Recognizing that the diffusion
coefficients of water and polymer are expected to be
significantly different, and that the diffusion of the polymer
molecules will decrease during crosslinking/gelation, the
use of the PFG n.m.r. technique is the ultimate choice11.

Figure 2 shows the1H-n.m.r. spectrum of the polymer
solution confined in a Bentheimer sandstone approximately
10 h after the solution was initiated into the sandstone.
Gradient pulses larger than 200 gauss cm¹1 were applied to
ensure that the signal from the more mobile water molecules
is reduced to zero. The remaining n.m.r. signal intensity
originates from the polymer only. The rather broad
resonance is composed of two resonance bands, correspond-
ing to the methine protons (low field) and the methylene
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Figure 1 Schematic drawing of the pulsed field gradient stimulated echo
pulse sequence. Symbols are defined in the text

Figure 2 1H-n.m.r. spectra versus the strength of the field gradient pulse
(g) at the end of the gelation process (t ¼ 8.4 h). The low field resonance
band corresponds to the methine proton and the high field band correspond
to the methylene protons in PVA



protons (high field) of PVA11. Due to susceptibility
broadening, the resonance band is difficult to deconvolute.
In this work we have therefore used the area of the complete
resonance band to represent the n.m.r. signal intensity of
PVA.

Diffusion
The feasibility of eliminating the large solvent water

signal by the PFG technique makes it possible to follow
changes in the polymer during the gel reaction. Also, the
n.m.r. parametersT1, T2 and the self-diffusion coefficient
(D) can be monitoredversusreaction time when applying
this particular n.m.r. technique, i.e. observing the echo
decay signal under different experimental conditions. With
reference to equation (1), the echo-intensityversus the
gradient strength squared (g2) at any given time during the
gelation process (whenT1 and T2 are constants) will be
purely exponential ift1, t2 andd are kept constant and the
polymer is described by a single diffusion coefficient.

Figure 3 shows the echo intensity of PVAversusthe
gradient strength squared (g2) at time t ¼ 56 min after
placement of the gel solution within the Bentheimer
sandstone. According to the constraints just outlined,
equation (1) simplifies to;

I ¼
∑

i
M90i ·exp[ ¹ (gd)2(t1 þ t2 ¹ d=3)D·g2] (2)

where the parameterM90i ¼ M0i·R1·R2 is constant.

Equation (2) was fitted to the observed echo-intensity
curve. Using statistical validity tests, the numerical analysis
showed a best fit to the observed decay curve to be
represented by three diffusion coefficients;D1 ¼ (6.56 1.5)
3 10¹7 cm2 s¹1, D2 ¼ (4.66 1.7)3 10¹8 cm2 s¹1 andD3 ¼
(2.5 6 1.9) 3 10¹9 cm2 s¹1 with M90i equal to 28%, 25%

and 47%, respectively (Figure 3A; solid curve). If fitting
only two exponentials to the observed echo curve (Figure
3a; dotted curve), the diffusion coefficients changes toD1 ¼
(2.42 6 0.18) 3 10¹7 cm2 s¹1 andD2 ¼ (5.81 6 0.73) 3
10¹9 cm2 s¹1 with relative intensities of 46% and 54%,
respectively. In this latter case, however, the residuals of the
fit reveals a non-random error distribution, as shown in
Figure 3B(dotted curve). The cognition of three diffusional
components giving a best fit to the observed echo intensity
was found to be of genuine nature at all reaction times (1–
9). The smaller diffusion coefficient was found, within
experimental error, to be constant with reaction time and
more than an order to magnitude smaller than the two larger
diffusion coefficients. The smaller diffusion coefficient, of
the order of 10¹9 cm2 s¹1, represents a limiting value
regarding sensitivity, i.e. slower diffusional motion can not
be resolved by the present PFG technique. We have
recently11 pointed out the complication involved in
rationalizing the observation of three time dependent
diffusion coefficients. Noting, however, that the two larger
diffusion coefficients are rather close to each other and that
the third coefficient is much longer and independent of
reaction time, the analysis can be simplified by introducing
a distribution of diffusion coefficients (w(D)) for the faster
diffusion process. This implies that the overall diffusion
process of the polymer can be characterized by a bimodal
distribution in D, where one diffusion mode can be
approximated by a slow and time independent diffusion
process. The origin of a distribution of diffusion coefficients
is related to the molecular weight distribution which has
been discussed by many authors18–20. In the next section we
will introduce the concept of distribution and derive a
mathematical model which will implement this idea in
relation to the PFG measurements.

Interlude
Regarding the accuracy of the diffusion coefficient

obtained in this work, one should consider the effect of
susceptibility and restricted motion (pore confined fluid) on
the echo-signal intensityversus gradient field strength
squared (g2). The average distance (r) a molecule diffuses
between the first and second gradient pulse (t ¼ 18 ms) can
be approximated by the well known Einstein equation;r 2 ¼
6Dt, whereD is the diffusion coefficient. This givesr ,
1 mm which is less than the pore dimension of the material
investigated and suggests that pore restriction only has a
minor effect on the measured diffusion coefficient. Regard-
ing the effect of susceptibility on the derived diffusion
coefficient this is a more complicated and complex matter.
This effect can, however, be partly overcome by applying a
more sophisticated pulse sequence21. In this work, we are
essentially not concerned about the absolute value ofD but
rather the relative change inD versusreaction time. Thus,
no further consideration or action regarding minimisation of
the susceptibility effect on the echo signal intensityversus
gradient strength is taken in this work.

Distribution of diffusion coefficients
A large number of continuous distribution functions exist

of which the most frequently used are; Binomial, Gaussian,
Poisson, Gamma, Rayleigh, Weibull, Maxwell, Log–
normal and Beta distributions22. We have no a priori
knowledge of what type of distribution which will represent
the distributions ofD. Our choice will simply be dictated by
mathematical simplicity and the object of obtaining a simple
analytical solution for the n.m.r. echo-signal intensity. Often
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Figure 3 (A) PFG n.m.r. echo signal intensity (area)versusthe square of
the field gradient pulse (g2) of PVA (Figure 2) at the initial stage of the gel
reaction (t ¼ 0.93 h). The solid/dotted curves represent three-exponential
and two-exponential fits to the observed echo intensity. (B) Residuals from
the exponential fits shown inFigure 3a. See text for further details



a log–normal distribution is used to characterize molecular
weight distributions20. However, this particular type of
distribution function will result in a rather complicated and
non-analytical solution to our specific problem. A modified
Gaussian distribution function denoted the Rayleigh
distribution which takes the form;

w(x) ¼ x·exp ¹
x¹ x0�����

2j
p !2" #

(3)

has therefore been chosen. In this equationx represents the
independent variable,x0 is the average value andj is the
width of the distribution. The advantage of this function
compared to the gaussian distribution function is that it
forcesw(x) to 0 for x ¼ 0 which is a physically adequate
constraint. Also, this function leads to the reasonable result
that w(x) ¼ 0 for x ¼ `.

Considering the exponential behaviour of the diffusional
term in equation (1) with respect toD, the average values of
R3 can be written;

Rav(3) ¼

∫`

0
Dexp ¹

D ¹ D0���
2

p
·jD

 !2" #
·exp( ¹ b·D) dD (4)

where the parameterb is equal to (t1 þ t2 ¹ d/3)·ðgdgÞ2.
After some tedious algebra, the following expression for
Rav(3) can be derived (see Appendix);

Rav(3) ¼ exp(j2
Db2=2¹ D0b)·

(
j2

D·exp
D0 ¹ j2

Db���
2

p
jD

" #
þ

���
2

p
jD(D0 ¹ j2

Db)·erfc
j2

Db ¹ D0���
2

p
jD

" #)
(5)

where ‘erfc’ is a conventional shorthand notation for the
complementary error function defined by;

erfc(u) ¼

∫`

u
exp( ¹ u2) du

We emphasize that 2N parameters are needed to fitN dis-
crete diffusion coefficients to equation (1) while only three
parameters are needed when introducing the Rayleigh
distribution function. Thus, introducing the distribution
function approach has the effect of increasing the number
of degrees of freedom in the curve-fitting procedure. More-
over, the exponential character of all theR-functions in
equations (1a), (1b), (1c) and (1d) makes it possible to
derive average values of theseR-functions which are analo-
gous to equation (5) when applying the same kind of dis-
tribution functions (Rayleigh functions) to characterize the
distribution in 1/T1 and 1/T2. We simply replace the para-
meterb with t2 andt1 and the parameterjD with j1/T1 and
j1=T2, respectively, in equation (5).

As mentioned earlier in this section, we have implicitly
assumed that the distribution of diffusion coefficients of the
polymer can be described by a bimodal distribution in which
the first mode is represented by a single and slow diffusion
component (which is independent of reaction time) while
the other mode is represented by a Rayleigh distribution
(equation (5)) with a much shorter diffusion component.
PFG experiments were run at nine different times (t) during
the gelation process (t ¼ 0.92, 1.85, 2.78, 3.71, 4.64, 5.57,
6,49, 7.42 and 8.34 h) and the echo intensities fitted to the
above outlined model. For the purpose of clarity only four of
these results are illustrated inFigure 4 where the dotted
curves represent model fits to equation (5). The solid curves
will be discussed in the next section. The resulting average
diffusion coefficients of the faster diffusion mode of all the
nine experiments are shown inFigure 5 versusreaction
time. The solid curve represents a model fit which will be
discussed in the next two sections.

Spin-lattice relaxation rate
Application of the spin-echo pulse sequence enables the

spin-lattice relaxation time (T1) to be determined by varying
the storage timet2 while keeping t1 and the gradient
strength (g) constant. It has to be emphasized that this
approach necessitates the knowledge of the self-diffusion
coefficient (D), as can be inferred from equation (1).
Assuming the spin-lattice relaxation rate (1/T1) to be
characterized by a Rayleigh distribution function (equation
(3)) we can easily show that the following model equation
will apply to this T1 experiment;

I ¼ M901Rav(2)(t2; T1,distr)·Rav(3), (t1, t2, g; Ddistr:)

þ M902R(t2; T1, long)·R3(t1, t2,g; Dlong) (6)

whereRav(2) is identical to equation (5) withb replaced byt1

and D0 and jD replaced by 1/T1 and j1/T1, respectively.
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Figure 4 Echo signal intensityversusthe square of the gradient pulse (g2)
at different times during the reaction. From bottom to top;t ¼ 0.93, 1.85,
2.78, 5.56 h. The solid curves represent individual fits of Equation (5) to the
data while the dotted curves represent corresponding fits to all experimental
data, i.e. both the spin-lattice relaxation rate data (seeFigure 6) and
diffusion data (Figure 4). See text for further details

Figure 5 The self-diffusion coefficient of the fast diffusion mode (Ddistr.)
versusreaction time. The solid curve is derived by model fit as explained in
the text



Rav(3) is equal to equation (1). Moreover,M90i (i ¼ 1,2) are
constants which only vary with reaction time (t) due to a
potential change inT2 versus t. D1long has been shown to be
constant and independent on reaction time and equal to 2.5
3 10¹9 cm2 s¹1. Using the previously derivedDdistr values
(Figure 5), equation (6) was fitted to the observed echo-
signalversustime (t2) at nine specific times (t) during the
reaction. For the sake of clarity, only four of these data sets
with corresponding model fits (dotted curves) are shown in
Figure 6. The single relaxation timeT1,long was found to be,
within experimental error, constant and equal to 16006
900 ms. The derived average relaxation rates 1/T1,distr of
the fast diffusion modeversusreaction time are plotted in
Figure 7. The solid curves represents model fits and will be
discussed in the next section.

Improvement and consistency in model fitting—gelation rate
The fitting of the diffusion data (Figure 4, dotted curves)

and the relaxation data (Figure 6, dotted curves) have been
performed with a minimum set of data points. In order to
access the extrinsic value of the gelation rate and to
constrain the fitting more effectively, an obvious extension
of the data analysis would be to consider all diffusion data
and all relaxation data as a single data matrix. This can be
realized by assuming the gelation rate (k) to be equivalent to
the rate of change in the spin-lattice relaxation rateversus
reaction time and to the change in the rate of the overall
diffusion versusreaction time.

In mathematical terms we will thus assume that the rate of

change in both spin-lattice relaxation and diffusion will
follow a first order rate law, i.e.

Y¼ [Y0 ¹ Ỳ ]·exp( ¹ kt) þ Ỳ (7)

whereY can be identified as the spin-lattice relaxation rate
(1/T1) or the self-diffusion coefficient (D). Y0 andY` repre-
sents the initialY-value (at the start of the reaction) and the
equilibrium Y-value (at the end of the reaction), respec-
tively.

The analysis discussed above has indicated that the
distribution parametersj1/T1 andjD follow a similar trend
(not shown)versusreaction time as the spin-lattice rate and
the self-diffusion coefficient. To further constrain the model
fit we will thus assume that the spread (j) in these
distribution parameters follow the same first order depen-
denceversusreaction time, as described by equation (7).
Based on these assumptions, the whole data matrix (216
data points) has been fitted to equations (5) and (6) under the
constraints represented by equation (7). The results are
shown by the solid curves inFigures 4, and 6and by the
solid curves inFigures 5, and 7. As can be seen, this
simultaneous three-dimensional fit (I versus g2, t2 and
reaction timet), under the above constraints, gives a very
good representation of the complete data set with a rate of
gelation of the order ofk ¼ 18 3 10¹5 s¹1 at 678C. The
results of the parameter fit are summarized inTable 1. This
rate of gelation is of the same order of magnitude as the
gelation found in a porous model system composed of glass
beads (203 10¹4 s¹1) as determined by an equivalent n.m.r.
approach11. However, the gelation rate is, within experi-
mental error, almost an order of magnitude larger than the
corresponding gelation rate observed in bulk solution using
a somewhat different n.m.r. approach10.
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Figure 6 Signal intensityversustime (t2) obtained from the PFG n.m.r.
pulse sequence during reaction time (t). From bottom to top;t ¼ 0.93, 1.85,
2.78, 5.56 h. The solid curves represent individual fits of Equation (5) to the
data while the dotted curves represent corresponding fits to all experimental
data, i.e. both the spin-lattice relaxation rate data (Figure 6) and diffusion
data (Figure 4). See text for further details

Figure 7 Spin-lattice relaxation rate (1/T1,distr.) versusreaction time. The
solid curve is derived by model fit as explained in the text

Figure 8 Model calculated distribution functions of (A) the overall
diffusion coefficient and (B) the spin-lattice relaxation rate of PVAversus
reaction time (t). From right to left the reaction times used in the
calculations aret ¼ 0.0.56, 1,11, 2.22 and 27.5 h. See text for further details



These results suggest that the gelation within a porous
material proceeds faster than in bulk solutions and indicate
that interactions between the pore surface and the polymer
solution might affect the gelation rate. It is reasonable to
expect that this latter interaction will be of less importance
with increasing pore dimension. This needs further
investigation.

In order to visualize the change in diffusion rate and spin-
lattice relaxation rate of the fast diffusion mode of PVA
during gelation, the distribution functions of these para-
meters are plotted at five different times during the reaction
(Figure 8). As can be inferred from this figure both
parameters are initially very broad. With increasing time,
both the diffusion rate and the spin-lattice relaxation rate
decrease and become more narrow. This suggests that the
molecules combine due to crosslinking and diffuse more
slowly and uniformly (due to the decreasing width of the
distribution) with reaction time.

Assuming the translational correlation time to be
dominated by dipole–dipole interactions, the decrease in
spin-lattice relaxation rate would, according to the
Bloembergen–Purcell–Pound (BPP)23 model, cause an
increase in the overall translational correlation time. This
is in agreement with the increasing crosslinking during the
gel reaction which reduces the mobility of the molecules.
These observations suggests an intimate correlation
between the overall diffusion and the molecular transla-
tional correlation time.

An interesting aspect of the n.m.r. analysis is to monitor
the change in the relative amount of polymer molecules
associated with the ‘fast’ diffusion modeversusreaction
time. In order to derive this information, the spin–spin
relaxation rates have to be measured (see equation (1)). This
is a somewhat more tricky exercise, due toJ-modulation16.
However, the use of a modified stimulated spin-echo pulse
sequence denoted the pulsed field-gradient longitudinal
eddy-current delay pulse sequence (PFGLED)16 should
accomplish this and will be the subject of future studies.

CONCLUSION

In this work we have shown that the gelation of a polymer–
crosslink–water system confined in a porous sandstone
(Bentheimer) can be probed by application of a PEG n.m.r.
technique. Introducing a distribution of diffusion coeffi-
cients and a distribution of spin-lattice relaxation rates show
that the polymer can be divided into two modes of
molecular motion, a ‘fast’ and a ‘slow’ mode of motion.
The derived theoretical model used to fit the experimental
n.m.r. data suggests an intimate correlation between the
diffusion coefficient and the spin-lattice relaxation rate of
PVA. The gelation rate, as characterized by the change in

the fast mode of motion of the polymerversusreaction time,
proceeds significantly faster within a porous material as
compared to a bulk polymer solution, and is tentatively
explained by a pore surface–polymer interaction.
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APPENDIX

In this section we will assume that a measurable parametery
depends exponentially on a n.m.r. parameterx according to
an exponential relation;

y¼ I0 exp( ¹ b·x) (A1)

If the parameterx is varying within the system under inves-
tigation we might approximate this variation by introducing
a distribution functionw(x). Based on physical reality we
will assume thatw(0) ¼ w(`) ¼ 0. A large number of dis-
tribution functions satisfying these constraints exist. We
will, however, limit the following discussion to one
particular distribution function, the Rayleigh distribution
function defined by;

w¼ x·exp ¹
x¹ x0���

2
p

j

 !2" #
(A2)

wherex0 represents the average value ofx andj the width of
the distribution. Inserting this distribution function into
equation (A1) enables the average value (yav) of the
observabley to be derived from equation (A3);

yav ¼ I0

∫`

0
x·exp ¹

x¹ x0���
2

p
j

 !2" #
·exp( ¹ b·x) dx (A3)

Rearrangement of the exponential terms gives;

yav ¼ I0·[j2b2=2¹ x0b]·
∫`

0
x·exp ¹

xþ j2b¹ x0���
2

p
j

 !2" #
dx

(A4)

The integral on the left side can be simplified by sub-
stituting

u¼
xþ j2b¹ x0���

2
p

j
⇔ du¼

1���
2

p
j

dx (A5)
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Table 1 Rate constant (k) and characteristics of the distribution functions (Rayleigh distribution function; Equation (3)) of the spin-lattice relaxation rate (1/
T1) and the self-diffusion coefficient (D) during an expected first order gelation process (Equation (7)) at 808C. The parameters are derived by fitting the model
equation (Equation (1)) to the complete set of relaxation data and diffusion data from a PFG n.m.r. experiment (see text for further details)

X 1/T1 (s¹1) D (cm2 s¹1)

j0x 5.8 2.53 10¹8

j`x 1.7 5.13 10¹8

X0 25 9.03 10¹8

X` 2.3 7.63 10¹8

kx (s¹1) a 18 3 10¹5 18 3 10¹5

j0
x andj`

x represent the width of the distributions at the start and at the end of the gel reaction, respectively. Likewise,X0 andX` define the average value of the
distributions at the start and at the end of the gel reaction.X is a shorthand notation forD and 1/T1
a The change in spin-lattice relaxation and self-diffusionversusreaction time has been constrained in the model fit, i.e.k1/T1 ¼ kD



into equation (A4), which results in the following expression;

The first integral term in equation (A6) can be solved by
partial integration resulting in the following and final
expression for the average value ofy;

yav ¼ I0exp(j2b2=2¹ x0b)·

(
j2·exp

x0 ¹ j2b���
2

p
j

" #

þ
���
2

p
j(x0 ¹ j2b)·erfc

j2b ¹ x0���
2

p
j

" #)
(A7)

where ‘erfc’ is a conventional shorthand notation for
the complementary error function defined byerfc(u) ¼∫`

0 exp( ¹ u2) du which is a tabulated function. Equation
(A7) is identical to equation (5).
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yav ¼ I0
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p
j·exp[j2b2=2¹ x0b]·

���
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p
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∫`

(j2b ¹ x0)=
��
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p
j
[u exp( ¹ u2) þ (x0 ¹ j2b)exp( ¹ u2)] du

� �
(A6)


